Assessment of Cardiac Sympathetic Nerve Function Using 123I-meta-Iodobenzylguanidine Scintigraphy: Technical Aspects and Standardization

Shinro Matsuo, MD, PhD, Kenichi Nakajima, MD, PhD

Received: April 21, 2015/Revised manuscript received: May 28, 2015/Accepted: May 28, 2015 © The Japanese Society of Nuclear Cardiology 2015

Abstract

The 123I-labeled meta-iodobenzylguanidine (MIBG) has been used in clinical medicine since 1992 to assess the severity and prognosis of heart failure. Although values of the heart-to-mediastinum ratio (HMR) were different depending on the difference of scinticamera-collimator systems, the standardization of the HMR became possible by using a calibration phantom. Semi-automated calculation of setting the region of interest for determining the HMR improves the reproducibility of the cardiac and mediastinum regions and might be used in every institution. This article describes standard technical information on techniques of MIBG, including HMR and collimators.

Keywords: Meta-iodobenzylguanidine, Heart-to-mediastinum ratio, Collimator, Standard medium-energy

Methods

Acquisition conditions

123I-MIBG, which in Japan is provided by FUJIFILM RI Pharma, Tokyo, has been used for the cardiac studies. 123I-MIBG study requires only minimal pre-test preparation. The consumption of drugs that potentially interfere with catecholamine uptake should be quitted at least 24 hours before the examination. Such drugs include antidepressants, antipsychotics, some calcium channel blockers, inotropic sympathomimetics, β2 stimulants and antiarrhythmics for ventricular arrhythmia (amiodarone) (9). The effects of the necessary...
withdrawal of the drugs should be evaluated in discussion with the referring physician. Thyroid uptake of free iodide can be prevented using stable iodine administered orally. 123I-MIBG is injected slowly at a typical dose of 111 MBq intravenously at rest. 123I-MIBG planar and single-photon emission computed tomography (SPECT) studies were performed at 20 minutes (early) and 3 hours (delayed) after the injection. The acquisition energy was set 159 keV with a 20% window. Previous prognostic data on MIBG imaging is based on analysis of planar images (11-13).

Imaging

A single or multiple head gamma camera with a large field of view is necessary to obtain planar and SPECT images. MIBG images can be obtained using a standard Anger gamma camera, including a dual headed or triple headed camera. Low-energy general-purpose (LEGP) or low-energy high-resolution (LEHR) is commonly applied to collimators because of their wide availability. These collimators are not optimal for 123I study due to thin septa compared to medium energy (ME) type collimators. ME collimators have thicker septa and lower penetration of gamma rays than LE collimators, which have a property of decreasing Compton scatter in scintigraphic images (14-15).

Collimator choice

The European Council of Nuclear Cardiology Committee recommended the use of ME collimators for MIBG images (16). Among many technical factors, collimator choice substantially affects the estimation of HMR. For the conditions of the collimator and camera, the value of HMR obtained from each collimator is different. Even among ME collimators, there is a slight difference in the values of HMR in previous studies (Table 2). A variety of collimators have been used in many countries. We can generally divide all collimators into two categories; LE type and ME type (17-21), and HMR obtained from LE type collimators can be converted into that of ME type (21). The camera vendors, however, produced various types of collimators for various purposes of clinical situations. The low-medium energy (LME) collimator is a good example that can cover higher energy scatter portion of 123I energy spectrum, since 123I, including MIBG and BMIPP, are widely used in Japan (21).

The heart-to-mediastinum ratio (HMR), regions of interest (ROI) setting

The HMR has been used to determine the uptake of MIBG in the heart. The HMR is a simple method that allows comparison of inter-individual and inter-institutional results by correcting for differences in body geometry and attenuation between individual subjects. There are several factors that could affect the values of HMR, including the method of ROI setting, choice of collimators, acquisition method, and correction method. Inter-institutional differences of HMR have hampered multi-center comparison of HMR and single-center results could not be extrapolated to other institutions, if

Table 1

<table>
<thead>
<tr>
<th>Indications</th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assessment of severity and prognosis of heart failure</td>
<td>I</td>
<td>B</td>
</tr>
<tr>
<td>Assessment of treatment effects of heart failure</td>
<td>IIa</td>
<td>C</td>
</tr>
</tbody>
</table>

(1): classification of recommendations, (2): level of evidence. 123I-MIBG, 123I-metaiodobenzylguanidine. (adapted from Circ J 2010 76; 763 ref 3)

Table 2

<table>
<thead>
<tr>
<th>Study</th>
<th>Subjects</th>
<th>cut-off values</th>
<th>collimator reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADMIRE-HF (6)</td>
<td>HF</td>
<td>1.6</td>
<td>LEHR</td>
</tr>
<tr>
<td>MIBG pooled</td>
<td>HF</td>
<td>1.68</td>
<td>LE</td>
</tr>
<tr>
<td>Data in Japan (5)</td>
<td>HF</td>
<td>1.74</td>
<td>LEGP</td>
</tr>
<tr>
<td>Nakata et al. (52)</td>
<td>HF</td>
<td>1.77</td>
<td>LE</td>
</tr>
<tr>
<td>King (54)</td>
<td>DLB</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ADMIER-HF, AdreView Myocardial Imaging for Risk Evaluation in Heart Failure; HF, heart failure; DLB, dementia with Lewy bodies; LEHR, low-energy high-resolution; ME, medium energy; LEGP, low-energy general purpose.
proper calibration is not used (22–23). Therefore, these factors should be standardized. Early and delayed HMR can be calculated on the basis of the mean count densities obtained from drawing the ROI of the left ventricle and mediastinum manually or automatically. Many investigators have used manually drawn ROI of the left ventricle and mediastinum in determining the HMR. Visual determination of ROIs for quantitative analysis of MIBG imaging has been a routine nuclear cardiology practice in Japan. Visual definition of the whole–heart ROI and mediastinum is an applicable technique for determining HMR on planar images, which may not result in significant clinical decision change as long as the ROIs are properly placed. Standardization of cardiac and mediastinal ROI setting is one of the most critical aspects for quantitative analysis in \(^{123}\)I–MIBG scintigraphy. Following is a recommended method to determine the ROI. Schematic representation of the \(^{123}\)I–MIBG is shown in Fig. 1, which shows a circular ROI in the heart and rectangular ROI in the mediastinum. As one of the proposed methods, the circular ROI is determined on the cardiac region for evaluating the heart count. In setting a mediastinal ROI, we can use the following method as a reference. The rectangular mediastinal ROI is set in the upper 30% of the lung vertical length and 10% of the horizontal body width. The thyroid and lung should be avoided in setting a mediastinal ROI. By using automated software, the same ROI can be placed even if the analyst is different. The smartMIBG (FUJIFILM RI Pharma Co., Ltd., Tokyo, Japan) software can be used for semi-automated calculation of setting the ROI (24). Determining the HMR by using the automated method improves the reproducibility of the cardiac ROI and could be used in every institution.

Correction methods

\(^{123}\)Iodine has a peak energy emission of 159 keV (97%). A photopake window of \(^{123}\)I is centered at 159 keV with a 20% energy window. However, \(^{123}\)I emits high–energy photons, which is a 529 keV component in 1.39% of the total number of photons with its down scatter (25). These photons may influence the estimation of the HMR causing the underestimation of the values (21). This scatter photon generally makes the value of HMR lower. The estimated HMR is also potentially affected by acquisition protocol. A scatter correction method called \(^{123}\)I dual–window (IDW) method was proposed (17, 19, 21). The IDW method proved to be useful in reducing effects of \(^{123}\)I high–energy down–scatter and septal penetration. The difference of collimator becomes an issue when the gamma camera is updated in its own facility. Standardized values of HMR are needed when we compare the data with other facilities, or when multicenter studies are conducted. Therefore, in order to correct the value calculated from the condition difference, the multiple energy window method as triple energy window (TEW) method, as well as IDW method, was proposed (17, 21). Furthermore, to achieve a simple correction among many institutions, the correction methods based on phantom experiments have been proposed for a standardization of HMR (26–27). The calibration phantom for \(^{123}\)I–MIBG was made for planar image acquisition, which included heart, lung, mediastinum and liver as shown in Fig. 2. By using the phantom, MIBG HMR measured by an LE collimator can be corrected to ME collimator–comparable values (21). A phantom experiment based on 225 experiments in 84 institutions all over Japan made it possible to unify all MHR values among various collimators (26). According to the results of the phantom study (27), the collimator types might be
classified into 7 or 8 major subgroups, although two types, namely LE and ME types, are considered as a rough classification.

A proposal to use standard ME condition

Although we cannot specify one collimator as a standard, we would like to propose to use the average K_{standard} of MEGP collimators as the standard. By phantom experiments, conversion coefficients to the mathematically calculated reference HMR were determined for each camera-collimator system (Table 3). First, the HMR of a camera A is converted to a theoretical HMR$_{\text{ref}}$ by using conversion coefficient of condition A (K_a), which is the slope of the regression line in the condition. Second, the HMR$_{\text{ref}}$ is converted to a standardized HMR (HMR$_{\text{standard}}$) using K_{standard} (Fig. 3). The K_{standard} was defined as average K values for typical ME collimators. We can simply calculate it by a formula $y = K_{\text{standard}} / K_a \times (x-1) + 1$. Here, as a condition of the collimator standardization, it was decided to make use of $K = 0.88$, which is the most common ME collimator (standard medium-energy 88, standardME 88) (27).

The cross-calibration method can be used to apply previous published data to one’s own institution. In clinical applications, standardized HMR successfully reclassifies various conditions into the same risk groups of patients.

Washout rate (WR)

WR of MIBG is another value for quantifying MIBG activity and provides information on the sympathetic drive (28-29). It is preferable to perform background correction and attenuation correction. According to the proposal for cardiac 123I-MIBG guidelines (16), WR is defined as:

$$WR(\%) = 100 \times \left(\frac{(\text{early H count}-\text{early M count}) - (\text{delayed H count}-\text{delayed M count}) \times k}{(\text{early H count}-\text{early M count})} \right)$$

where $k = 1/0.5^{13}$ (k means time decay correction factor, and t means time in hours)

SPECT image

SPECT can improve the diagnosis of the localization of sympathetic nerve innervation and characterization. Thus SPECT image should be performed when possible. Different types of gamma cameras are available. The characteristics of the camera should be taken into

<table>
<thead>
<tr>
<th>Collimator</th>
<th>LE or ME</th>
<th>Conversion coefficient (mean)</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEHR</td>
<td>LE</td>
<td>0.55</td>
<td>0.05</td>
</tr>
<tr>
<td>CHR</td>
<td>LE</td>
<td>0.55</td>
<td>0.02</td>
</tr>
<tr>
<td>LEGP/AP</td>
<td>LE</td>
<td>0.65</td>
<td>0.04</td>
</tr>
<tr>
<td>ELEGPG (two groups)</td>
<td>LE</td>
<td>0.62, 0.75</td>
<td>0.03, 0.03</td>
</tr>
<tr>
<td>LMEGP</td>
<td>ME</td>
<td>0.83</td>
<td>0.05</td>
</tr>
<tr>
<td>MEPG/GAP</td>
<td>ME</td>
<td>0.95</td>
<td>0.04</td>
</tr>
<tr>
<td>MELP</td>
<td>ME</td>
<td>0.95</td>
<td>0.04</td>
</tr>
</tbody>
</table>

LEHR, low-energy high-resolution; ME, medium energy; LEGP, low-energy general-purpose. LMEGP, low-medium-energy general-purpose; MEPG, medium-energy general-purpose; LE, low energy; ME, medium energy.
account to optimize image quality. For SPECT studies, a rotation of 180° or 360° can be used. Images are stored in a 64×64 or 128×128 matrices. The acquisition is comparable to myocardial perfusion imaging.

MIBG distribution of left ventricle

The normal distribution of MIBG in the left ventricular myocardium was not quite homogenous, showing a slight decrease in apex and inferior segments of the left ventricle. A normal Japanese database showed a regional heterogeneity of MIBG uptake, especially in the inferior and apical regions in normal subjects as shown in previous studies (30-32). It has to be kept in mind that MIBG uptake in the inferior wall and in the apex have wide standard deviation and may be decreased in some patients. The decreased uptakes in the apical inferolateral and inferior segment in the delayed images can be seen compared to the initial images (32). The rapid clearance of MIBG in these segments should be remembered in clinical practice, although the real mechanism is unclear. This heterogeneity is considered to be enhanced with the progression of the disease, including heart failure, ischemia, or with age (30-31). The MIBG uptake might vary depending on gender or age. Diabetes may also affect the less inferior uptake of 123I-MIBG (31). Defect score of MIBG can be used to semi-quantify the defect of the left ventricle (31). Regional tracer uptake was assessed semi-quantitatively using a 5-point scoring system (0 = normal to 4 = no uptake) in 17 segments on the delayed SPECT image as recommended in perfusion imaging by the American Heart Association (33). The total defect score (TDS) was calculated as the sum of all defect scores (34). The normal range for the delayed TDS by using an appropriate database is 0-3 (32). However, there is no established SPECT-based method for estimating or scoring MIBG uptake for the patients with heart failure. High activity of liver or lung may be superimposed on myocardial activity in planar images. The inferior wall of the left ventricle might be affected by the high liver uptake (35).

Normal values of HMR and WR, and distribution of SPECT

A normal database was created in Japan as a working group activity of the Japanese Society of Nuclear Medicine (JSNM), and normal values of HMR were shown in Table 4 (32). In the JSNM-working group normal databases 123I-MIBG, average late HMR was 2.5 and 3.0 for LE-collimator and ME-collimator groups. The value of WR is shown in Table 5.

Clinical implication

Early HMR reflects the cardiac sympathetic innervation. Delayed HMR is considered to express the cardiac sympathetic activity, including the number of sympathetic nerve terminals (36-40). The information of distribution of neurons and function of the uptake-1 of MIBG can be obtained by HMR. In a recent ADMIRE-HF study (6), patients with low HMR showed a significantly higher incidence of serious cardiac events including of heart failure and cardiac death. Many clinical studies have recently demonstrated the important role of 123I-MIBG scintigraphy (41-52). MIBG HMR is better than left ventricular ejection fraction for long-term risk stratification (53-55). In part, patients with Lewy-body disease also have low HMR, which reflects a pathological progression of the disease process involving extensive autonomic involvement (54).

Conclusion

The standard technical information on techniques of MIBG, including HMR and collimators, was described in this article. Global abnormality of 123I-MIBG distribution has been reported in various disorders and conditions. The more precisely HMR determined, the more useful the MIBG scintigraphy will be to help health care and

<table>
<thead>
<tr>
<th>Table 4</th>
<th>Normal values of heart-to-mediastinum ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Early HMR</td>
</tr>
<tr>
<td>LE collimator</td>
<td>2.4</td>
</tr>
<tr>
<td>ME/LME collimator</td>
<td>2.8</td>
</tr>
<tr>
<td>Standard ME</td>
<td>3.1</td>
</tr>
</tbody>
</table>

HMR, heart-to-mediastinum ratio; LE, low energy; ME, medium-energy; LME, low-medium-energy.

<table>
<thead>
<tr>
<th>Table 5</th>
<th>Normal values of washout rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Washout rate</td>
</tr>
<tr>
<td></td>
<td>Time decay correction</td>
</tr>
<tr>
<td></td>
<td>Time decay and background correction</td>
</tr>
</tbody>
</table>

SD, standard deviation.

13% (0-34)

Time decay and background correction

2.4

LE collimator

2.2-4.4

3.3

2.2-4.0

3.1

Standard ME

2.0-4.3

3.0

2.0-3.7

2.8

ME/LME collimator

1.9-3.1

HMR

1.9-3.0

Range

2.2-4.0

Range

2.2-4.4

1.9-3.0

Range

2.5

LE collimator

2.0-3.7

3.0

2.2-4.0

3.3

2.2-4.4

3.1

Standard ME

2.0-4.3

3.0

2.0-3.7

2.8

ME/LME collimator
for the patients' managements.

Acknowledgments
We thank Ronald G. Belisle for editorial assistance.

Sources of Funding
This study was supported by JSPS Grants-in-Aid for Scientific Research (C) in Japan (grant number 23591755, PI Shinro Matsuo).

Conflicts of Interest
S. Matsuo and K. Nakajima have a collaborative research work with FUJIFILM RI Pharma, Co. Ltd. Japan, for developing the nuclear cardiology software.

No other potential conflict of interest relevant to this article was reported.

Reprint requests and correspondence:
Shinro Matsuo,
Department of Nuclear Medicine Kanazawa University Hospital, 13-1 Takaramachi, Kanazawa, Ishikawa, Japan 920-8641
E-mail: smatsuo@nm.m.kanazawa-u.ac.jp

References

45. Murozono Y, Yufu K, Takahashi N, et al. Combined assessment of baroreflex sensitivity with iodine 123 metaiodobenzylguanidine scintigraphic findings strengthens the power of predictive value for cerebral and