CURRENT MINISTRY APPROVAL OF CARDIAC PET & SPECT IN JAPAN

Keiichiro Yoshinaga, MD, PhD, FACC

Received: April 2, 2015/Revised manuscript received: April 6, 2015/Accepted: April 6, 2015 © The Japanese Society of Nuclear Cardiology 2015

Abstract

The current Japanese Ministry of Health, Labor, and Welfare (JMHLW) approvals of cardiac positron emission tomography (PET) include viability, cardiac function, MPI, and detection of inflammatory lesions in cardiac sarcoidosis. The new approval of 13N-ammonia and 18F-fluorodeoxyglucose (FDG) for cardiac sarcoidosis have had much impacts on nuclear cardiology community in Japan. Cardiac PET has moved from research PET to clinical PET in Japan.

Keywords: Approval・Japanese Ministry of Health, Labor, and Welfare・myocardial perfusion imaging・positron emission tomography

The Japanese Ministry of Health, Labor, and Welfare (JMHLW) initially approved 15O-labeled gas for left ventricular (LV) functional measurements in 1996. The approval of positron emission tomography (PET) was actually very limited until March 5, 2012. JMHLW currently approves 13N-ammonia for myocardial perfusion imaging (MPI), 15O-labeled gas for radionuclide angiography, and 18F-FDG for myocardial viability and cardiac sarcoidosis testing (Table 1) (1). Recently, most facilities use the hybrid PET/CT scanners. However, the current approval of cardiac PET does still not reimburse PET and simultaneous CT study.

The JMHLW’s approval of PET including the use of 18F-FDG to detect cardiac involvement of sarcoidosis is significant considering that it is not approved in other countries. This approval is likely based on the significant numbers of evidence in Japan showing the usefulness of 18F-FDG PET in detecting cardiac involvement of sarcoidosis (2).

In the United States, the FDA approved the clinical use of 82Rubidium MPI in 1989, and reimbursement by the Centers for Medicare and Medicaid Services (CMS) began in 1995. Currently, CMS reimbursement applies to 82Rubidium, 13N-ammonia, and 18F-FDG (3). The widespread use of 82Rubidium must be associated with the approval for clinical use in the United States and Canada (4). 82Rubidium has been applied to a limited number of patients with coronary artery disease in Japan for research-based investigations (5). As the next step, approval of 82Rubidium for the clinical use is expected.

Cardiac PET Practice in Japan

The Japanese Isotope Association has conducted a survey of nuclear medicine practice every 5 years since 1982 (6). The total number of 18F-FDG PET studies was 505,990 in 2012. However, most of the 18F-FDG PET studies were in oncology (96.3%); cardiac studies accounted for 0.13%. 13N-ammonia PET MPI was performed in 2,172 studies and numbers for 13N-ammonia PET MPI showed no significant difference compared to those for the previous survey in 2005. 18N-ammonia was approved in April, 2012 by JMHLW. The survey was performed in June 2012 and thus the number of

doi: 10.17799/ANC.01.01.106

Keiichiro Yoshinaga
Co-director, Molecular Imaging Research Center National Institute of Radiological Sciences 4-9-1 Anagawa, Inage-Ku, Chiba, Japan 263-8555
E-mail: kyoshi@nirs.go.jp
Japanese Circulation Society Guidelines for Cardiac PET

The Japanese Circulation Society (JCS) guidelines addressed the clinical indication for PET. In the current JCS guidelines, 18F-FDG PET is class 1 indication for detecting viable myocardium and PET MPI is categorized class I indication for detecting myocardial ischemia (7).

Future Directions

The current JMHLW approvals of cardiac PET include viability, cardiac function, MPI, and detection of inflammatory lesions in cardiac sarcoidosis. As the next step, new PET MPI tracers are expected to be approved in the future.

Acknowledgments

The authors acknowledge Drs. Yuuki Tomiyama, and Eriko Suzuki for their assistance in preparing the manuscript.

Sources of Funding

None

Conflicts of Interest

None

References