The Japanese Society of Nuclear Cardiology (JSNC) has given Young Investigator Awards (YIA) to researchers under age 40 since 2000 to promote nuclear cardiology research activities among young physicians. In the earlier format, candidates submitted their published work to the JSNC selection committee and the top 3 candidates made a presentation at the YIA competition session. Participants had performed highly sophisticated research. For example, among 3 candidates who were selected, 2 had had their work published in Circulation (1, 2). However, the published work was already somewhat out of date. Bearing that in mind, in 2014 the JSNC executive committee changed the YIA selection format so that the top 3 of all abstracts submitted for the JSNC society meeting were selected for YIA candidacy. Under the modified format, participants can learn about the newest research topics in a timely manner, in line with the aims of a scientific meeting. Under this new selection format, the chances for JSNC members under the age of 40 to be awarded a YIA prize are also increased. In this review, we will report on the latest research topics from the 2014 JSNC YIA session.

Latest research topics in nuclear cardiology and cardiac imaging

The presence of cardiac sarcoidosis (CS) increases the risk of cardiovascular events including conduction abnormalities, ventricular arrhythmia and heart failure in patients with sarcoidosis (3, 4). Recently the Heart Rhythm Society (HRS) issued a consensus regarding the detection of CS and discussing the importance of CS in patients with conduction abnormalities or rhythm abnormalities (5). The report indicated that 18F-
fluorodeoxyglucose (FDG) positron emission tomography (PET) is an important diagnostic modality in the diagnosis of CS, and the JSNC issued \(^{18}\text{F}-\text{FDG}\) PET imaging guidelines for the detection of CS (6). Research on how to detect cardiac involvement is therefore important for the management of sarcoidosis. Dr. Shohei Kataoka, a cardiologist at Tokyo Women’s Medical University, and his colleagues evaluated characteristics of cardiac lesions in 15 patients with CS using rest \(^{201}\text{TI} \text{thallium}\) myocardial perfusion imaging, rest \(^{123}\text{I}-\text{BMIPP}\) myocardial fatty acid imaging, \(^{18}\text{F}-\text{FDG}\) PET, and cardiac magnetic resonance imaging (CMR). Based on the CMR findings, myocardial regions were classified into 3 categories: no myocardial fibrosis, partial fibrosis, and all-layer fibrosis. \(^{123}\text{I}-\text{BMIPP}\) defects and \(^{201}\text{TI}\) defects increased in relation to the severity of myocardial fibrosis. Importantly, \(^{123}\text{I}-\text{BMIPP}\) defects were larger than \(^{201}\text{TI}\) defects, a finding that possibly means \(^{123}\text{I}-\text{BMIPP}\), already used in the detection of ischemic heart disease, could also be used in the detection of early cardiac damage in patients with CS (7). The amount of \(^{18}\text{F}-\text{FDG}\) positive uptake was lower in the segments with all-layer fibrosis. This study revealed the importance of being able to image cardiac fatty acid metabolism in the detection of CS. Further investigation of this finding is necessary.

Risk stratification using stress myocardial perfusion single-photon emission computed tomography (SPECT) has been widely applied in clinical settings. A summed stress score, which includes both the size of myocardial injury and the degree of stress-induced ischemia, is considered to be the most powerful parameter of cardiovascular event risk measurement (8,9). The COURAGE trial nuclear sub-study showed that a reduction in ischemic burden as assessed by a summed difference score (SDS) was associated with improved patient prognosis (10). In particular, a reduction in ischemic burden of more than 5% contributed to a decrease in the number of patients who had hard cardiac events including cardiac death and non-fatal myocardial infarction. Recently, Yusuke Hori, a cardiologist at Nihon University, and his colleague documented the relationship between ischemic burden reduction and patient prognosis including cardiac death, non–fatal myocardial infarction and unstable angina after coronary artery revascularization in the Japanese population (11). They found that there was a significantly greater reduction in ischemic burden in the coronary intervention group than in the medically treated group. Of 513 patients who were followed up on, 45 had hard cardiac events. Multi–variate analysis showed that a reduction in ischemic burden of more than 5% following revascularization contributed to an improvement in a patient’s prognosis. As well, LV ejection fraction was a significant predictor of hard cardiac events. This manuscript emphasized the importance of physiological assessment in cases of coronary revascularization.

Myocardial blood flow (MBF) quantification has been developed primarily using PET (12). PET MBF quantification is considered to be accurate. However, accessibility to cardiac PET is limited in clinical settings. Therefore, alternative approaches to MBF quantification are required. Yasuka Kikuchi, a diagnostic radiologist at Hokkaido University, and her colleague developed a method of MBF quantification using 320 multi–slice computed tomography (CT) (13). Based on their previous work, the authors aimed to further develop MBF measurements using multi–slice CT. In the current study, the authors evaluated regional MBF in regions such as left anterior descending (LAD) territory, right coronary artery (RCA) territory, and left circumflex (LCX) territory using a single–tissue compartment model (14). Rest and hyperemic MBF were correlated with MBF measured by \(^{15}\text{O}\)-labeled water PET, which was considered to be the gold standard (15). The data may imply that CT MBF quantification may be suitable for the analysis of regional MBF.

Conclusions
Topics under consideration in the JSNC YIA competition included cardiac sarcoidosis, risk assessment using myocardial perfusion imaging, and CT myocardial perfusion. These 3 presentations reflected current research topics. The next YIA session will be expected to provide JSNC members with information on the latest significant research topics.

Acknowledgments
The authors acknowledge Drs. Shohei Kataoka, Mitsuru Momose, Yusuke Hori and Yasuka Kikuchi for their assistance in preparing the manuscript. This manuscript has been reviewed by a North American English–language professional editor, Ms. Holly Beanlands. The authors also thank Ms. Holly Beanlands for critical reading of the manuscript.

Sources of Funding
None
References