Since the advent of \(^{123}\text{I}\)-meta-iodobenzylguanidine (MIBG) in 1990s, it has been widely used in clinical practice in Japan. Based on the wide range of clinical applications, \(^{123}\text{I}\) MIBG is now incorporated in Japanese Circulation Society’s guidelines of nuclear cardiology. The major role of \(^{123}\text{I}\) MIBG has been in determination of severity and prognostic evaluation of heart failure. In addition, assessment of the treatment by various types of medications has been the second major role of \(^{123}\text{I}\) MIBG imaging. Compared with the conventional clinical parameters of heart failure, additive values of \(^{123}\text{I}\) MIBG depend on how it reflects the patient condition more accurately, and how it relates to improvement in the patient outcome. \(^{123}\text{I}\) MIBG is also now available for cardiac imaging in the USA and Europe. Unified methodology and further studies focusing on clinical decision-making are the next required steps to document MIBG utility.

Keywords: \(^{123}\text{I}\)-meta-iodobenzylguanidine (MIBG), Chronic heart failure, Decision making, Prognosis, therapeutic intervention

Ann Nucl Cardiol 2015;1 (1) : 127-131
regions, was related to poor prognosis. Another parameter often used was washout rate or MIBG clearance from the heart. The endpoints included cardiac death including deaths from pump failure, sudden cardiac death and acute myocardial infarction, as well as exacerbation of CHF symptoms (2–5). In addition, a number of multicenter studies and meta-analyses have been performed in Japan, Europe and USA (6–10). These studies have indicated that HMR with 123I MIBG had independent and powerful prognostic value. The most appropriate threshold of HMR for discriminating good and poor prognosis has varied among studies, ranging from 1.2 to 1.8 depending on the included patients’ background, disease severity, and outcome endpoints, although simple dichotomization of HMR may not be the best practice (11). While CHF symptoms and left ventricular function, and markers such as b-type natriuretic peptide (BNP) are also important predictors of cardiac events, numerous studies have shown that 123I MIBG imaging provides additional prognostic information. It has been more difficult to establish whether MIBG imaging adds clinical value over conventional diagnostic approaches, in spite of its documented additive value over conventional parameters using multiple statistical methods.

The superiority of the strategy of adding MIBG has been verified using statistical analysis techniques such as multivariate proportional hazards and logistic regression, receiver–operating characteristic curve analysis and net reclassification improvement (NRI) analysis. In the sub-analysis of ADMIRE-HF study, additive value of MIBG was mainly to reclassify patients into severer CHF groups (12). The NRI was 22.7% with 14.9% of subjects who died reclassified into a higher risk category than suggested by Seattle Heart Failure Model score alone. On the other hand, analyses of the Japanese pooled database based on six prospective cohort studies have shown that the model incorporating 123I MIBG could reclassify patients better into the less severe CHF groups (12). The NRI using the model with 123I MIBG was 17.5% with 10.2% reclassified into lower risks for surviving patients. Although the NRI results from these 2 different patient groups initially appear contradictory, they in fact suggest that the benefits of MIBG imaging may depend on the study population; the potential effective utility of 123I MIBG is in characterizing the dominant component of the CHF population, whether the pretest likelihood of an event in that group is low or high.

Based upon the Japanese meta analysis population, the most potent combination of predictors was New York Heart Association (NYHA) functional class, age, sex, left ventricular ejection fraction (LVEF), and 123I MIBG HMR (6–8,13) (Fig. 1). Although BNP was also included as a good predictor of cardiac events in these studies, BNP level is known to respond to short-term functional changes, while MIBG is typically relatively stable during hospital course.

123I MIBG for the assessment of medical treatment

The second indication listed in the JCS guidelines is assessment of effect of heart failure treatment (Class IIa: conditions for which there is conflicting evidence or a divergence of opinion about the usefulness of a test, but weight of evidence/opinion is in favor of usefulness). In clinical practice, improvement in symptoms and cardiac function is a salient marker to evaluate therapeutic effects. However, 123I MIBG imaging provides a means to document one of the physiological mechanisms for clinical improvement in CHF patients, recovery of sympathetic neuronal function in response to modulation of sympathetic and renin–angiotensin–aldosterone system overactivity. The research question has been whether improvement of sympathetic function after medications was associated with better clinical course of CHF and eventually related to favorable outcomes. Kasama’s review article in this issue of journal, Annals of Nuclear Cardiology, summarized the use of 123I MIBG regarding assessment of medical treatments (14). He has extensively investigated the utility of 123I MIBG associated with interventions with medications, including beta blockers, angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers, aldosterone blockers, diuretics, and others.

These results indicated that therapeutic interventions affect sympathetic innervation in a variety of ways in addition to the improvement of left ventricular function. As most modern CHF therapeutics act directly or indirectly on the autonomic nervous system and the renin–angiotensin–aldosterone system, the consistent finding of improvement of MIBG cardiac uptake with use of almost all these medications is important validation of their therapeutic effectiveness. However, heart failure treatment guidelines based upon randomized clinical trials do not include MIBG imaging as an adjunct to assist in decision-making. As such, further studies are needed to explore how MIBG could be used to improve decision-making for optimal medical therapy. For example, in almost every clinical trial there is a subset of patients who do not benefit from the therapy under study. Perhaps MIBG imaging would be able to identify such non-responders in clinical practice, thus
avoiding extended courses of ultimately ineffective therapy. At present, cardiologists often think that 123I-MIBG results are interesting but not essential for making treatment decisions. Although 123I MIBG is included in current JCS nuclear cardiology guidelines, 123I MIBG will only be added into cardiology practice guidelines of CHF if further research documents improvement in clinical outcomes among patients who underwent the imaging procedure.

Future directions of 123I MIBG

Standardized methods for data acquisition and processing are required. The method for calculating HMR is simple, but the numerical result is dependent on technical factors that can only be accounted for using cross-calibration techniques to compensate for camera-collimator variations. In Japan, research has been performed on this issue, and more than 100 hospitals are now able to use standardized HMR based on a cross-calibration phantom study (15). Additional studies to extend the standardization of HMR to cadmium zinc telluride (CZT) cameras, on which conventional anterior planar images cannot obtained, will also be required.

Despite improvements in therapies over the past several decades, mortality from CHF in Japan, USA and Europe remains high, comparable to that of many types of cancer. Data indicate that the reliability of mortality risk estimation is enhanced using 123I MIBG, allowing more accurate identification of low-risk patients (for example those with HMR >2.0 and annual mortality risk <1%) who are unlikely to benefit from costly cardiac device treatment (Fig. 2). On the other hand, patients who have low HMR and high mortality risk may be more effectively identified for referral for cardiac device therapy such as implantable cardioverter-defibrillator (ICD) or cardiac resynchronization therapy combined with ICD. In addition, rather than evaluating the effect of medications on individual parameters such as LVEF or MIBG HMR, it might be more appropriate to quantify risk reduction in terms of
the estimated mortality rate. Future prospective cohort studies will hopefully confirm the validity of this hypothesis.

In the current era of multimodality imaging, echocardiography, cardiac X-ray computed tomography, and magnetic resonance imaging have specific unique roles to determine etiology and diagnose functional status to aid in the management of CHF. Numerous nuclear cardiology studies, including myocardial perfusion imaging with ECG-gating, fatty acid imaging with 123I beta-methylidophenyl pentadecanoic acid (BMIPP), 18F fluorodeoxyglucose (FDG), and 123I MIBG are also available (16). The ongoing challenge for cardiologists and radiologists/nuclear medicine physicians is to select the most appropriate procedures that will yield the necessary clinical information in a cost-effective and patient-centric manner.

Conclusion

123I MIBG imaging is a readily available and powerful tool to predict prognosis in CHF. The next step will be to improve the integration of MIBG imaging into clinical practice in order to enhance effective risk stratification and achieve more cost-effective therapeutic approaches in CHF.

Conflicts of Interest

KN has a collaborative research work for development of the software with FUJIFILM RI Pharma, Co. Ltd, supplier of MyoMIBG in Japan. AJ was formerly employed by GE Healthcare, a manufacturer of MIBG in Europe and the US.

Reprint requests and correspondence:
Kenichi Nakajima,
Department of Nuclear Medicine, Kanazawa University Hospital, 13-1, Takara-machi, Kanazawa, Japan 920-8641
E-mail: nakajima@med.kanazawa-u.ac.jp

References

5. Imamura Y, Fukuyama T, Mochizuki T, Miyagawa M, Watanabe K, Ehime MHFSI. Prognostic value of iodine–123–metaiodobenzylguanidine imaging and cardiac natriuretic peptide levels in patients with left ventricular...