Primary cardiac tumors are rare, with an autopsy incidence rate of 0.0017-0.33% (1-3). Secondary cardiac or pericardial tumors, most of which are metastases, are 20-130 times more common than primary cardiac tumors and are found in >10% of cancer patients during autopsies (1-4). Primary and secondary cardiac tumors have been classified into numerous pathological types (1). The clinical incidence of cardiac tumors varies according to when and where the study was performed. Table 1 shows the approximate frequencies of primary cardiac tumors according to several previous reports (1,5-10). About 75% of primary cardiac tumors are benign, and myxoma is the most common type of primary cardiac tumor, followed by lipoma, fibroelastoma, fibroma, and hemangioma. Rhabdomyoma and fibroma are more common in children than in adults (1,9-11). Among cavitory lesions, cardiac thrombosis, which sometimes requires surgery, is relatively common and needs to be differentiated from other cardiac tumors (12,13). About 25% of primary cardiac tumors are malignant, and sarcomatous lesions are the most frequently encountered malignant cardiac tumors (1, 5-8). However, rhabdomyosarcoma is the most common malignant cardiac tumor in children (1).

Some tumors can cause cardiac dysfunction, and the main treatment option for benign cardiac tumors is complete
Resection. Resection is also a treatment option for malignant tumors. Preoperative evaluations of the size, location, mobility, and pathology of cardiac tumors are very important. Echocardiography, computed tomography (CT), magnetic resonance imaging (MRI), and 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT play important roles in such evaluations (14-16). In addition, the recent development of PET/MRI scanners has led to further advances in cardiovascular imaging (17).

Herein, we review the imaging features of cardiac tumors and present images of cardiac diseases that were obtained using various techniques at our institution.

Computed tomography (CT)

CT can provide excellent anatomical and morphological information and clearly demonstrate calcification and fat components (15,18). Tumor vascularity can also be assessed using iodine contrast media. Multi-detector-row CT scans provide a wide field of view and a high spatial resolution, can be performed with and without electrocardiography (ECG)-gated protocols, and do not take long. Three-dimensional or multiplanar reconstruction images can also be obtained. Tumor movement and the locations of cardiac valves and the myocardium can be evaluated on ECG-gated cine-CT. In addition, advances are being made in low radiation dose and high spatial resolution techniques (19).

Magnetic resonance imaging (MRI)

MRI is superior to tissue characterization using numerous scan parameters. Signal intensity can be used as an indicator of the histopathological state of the target tissue. Adipose tissue exhibits high intensity on both T1-weighted imaging (WI) and T2WI, and signal loss is evident in such regions on fat-suppressed sequences. On T2WI, fibrotic tissue displays low intensity, and edema demonstrates high intensity. Hemorrhaging or degeneration can show various signal intensities. Many malignant tumors display high intensity on diffusion-weighted imaging, depending on their tumor cell density or the degree of diffusion impairment. Cine-MRI and contrast-enhanced MRI are also useful for tumor evaluations. However, MRI is of limited use in cases involving patients with claustrophobia or implanted metallic devices, such as non-MRI-conditional cardiac pacemakers (who cannot undergo MRI). On the other hand, MRI-conditional cardiac devices have recently been developed and are available in the clinical setting (14,15,20-22).

Fluorodeoxyglucose-positron emission tomography/CT (FDG-PET/CT)

FDG is a glucose analog that has been labeled with the fluorine-18 positron and accumulates in some tumors and active inflammatory lesions, such as cardiac sarcoidosis and vasculitis (23,24). FDG-PET/CT can provide both morphological and metabolic images of the whole body in a single session, and is very useful for tumor staging, detecting recurrence, predicting prognosis, and therapeutic monitoring (25-27). Both primary and secondary cardiac tumors can be evaluated using FDG-PET/CT. In cases of cardiac metastasis, FDG-PET/CT can detect both the primary lesions, such as lung cancer, esophageal cancer, etc., and the cardiac metastasis. In cardiac lymphoma, FDG-PET/CT is useful for staging and can clarify whether a cardiac lesion is a primary lesion or represents an extra-nodal form of systemic lymphoma. Malignant tumors utilize much more glucose than benign ones. Thus, strong FDG uptake is seen in malignant tumors, whereas benign tumors demonstrate no to faint FDG uptake. The extent of FDG uptake reflects the degree of histopathological malignancy, and evaluations of FDG uptake are useful for differentiating between benign and malignant lesions (28,29). The standardized uptake value (SUV) is a quantitative parameter that indicates the degree of FDG uptake in a lesion corrected for body weight and the injected FDG dose, assuming that the FDG is evenly distributed throughout the body (30). Malignant cardiac tumors display high SUV, and benign cardiac tumors exhibit lower SUV than malignant

Table 1Clinical frequency of primary cardiac tumors (modified from Ref 1, 5-9)

<table>
<thead>
<tr>
<th>Primary cardiac tumors</th>
<th>Frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benign</td>
<td></td>
</tr>
<tr>
<td>Myxoma</td>
<td>40 ~ 90</td>
</tr>
<tr>
<td>Papillary fibroelastoma</td>
<td>~ 25</td>
</tr>
<tr>
<td>Hemangioma</td>
<td>5</td>
</tr>
<tr>
<td>Fibroma</td>
<td>< 5 (20% in children)</td>
</tr>
<tr>
<td>Lipoma</td>
<td>< 5</td>
</tr>
<tr>
<td>Rhabdomyoma</td>
<td>< 5 (40% in children)</td>
</tr>
<tr>
<td>Paraganglioma</td>
<td>< 5</td>
</tr>
<tr>
<td>Hamartoma</td>
<td>< 5</td>
</tr>
<tr>
<td>Malignant</td>
<td>25%</td>
</tr>
<tr>
<td>Angiosarcoma</td>
<td>4</td>
</tr>
<tr>
<td>Rhabdomyosarcoma</td>
<td>3</td>
</tr>
<tr>
<td>Other sarcoma</td>
<td>5</td>
</tr>
<tr>
<td>Leiomyosarcoma</td>
<td></td>
</tr>
<tr>
<td>Pleomorphic liposarcoma</td>
<td></td>
</tr>
<tr>
<td>Undifferentiated sarcoma</td>
<td></td>
</tr>
<tr>
<td>Osteosarcoma</td>
<td></td>
</tr>
<tr>
<td>Synovial sarcoma</td>
<td></td>
</tr>
<tr>
<td>Malignant fibrous histiocytoma</td>
<td>5</td>
</tr>
<tr>
<td>Primary lymphoma</td>
<td>2 ~ 9</td>
</tr>
</tbody>
</table>

Takahashi et al. Multimodal Imaging of Cardiac Tumors

Ann Nucl Cardiol 2016 : 2 (1) : 61-67
ones. However, cardiac tumors are rare, and there have been few studies about the FDG-PET findings of cardiac tumors involving a large number of patients. Although there is no clear SUVmax cut-off value for differentiating between malignant and benign cardiac tumors, malignant tumors have greater SUVmax values than benign tumors. Table 2 shows the SUVmax values of cardiac lesions reported in the literature. It is proposed that the optimum cut-off SUV max value for differentiating between malignant and benign cardiac tumors is 3.5-4.0 (16,30). In particular, diffuse large B-cell lymphoma (DLBCL) tends to exhibit greater SUVmax values than other malignant cardiac tumors (31). Regarding the detection of cardiac tumors on FDG-PET, physiological FDG accumulation in the myocardium can sometimes be problematic. Physiological cardiac FDG uptake exhibits four different patterns (none, diffuse, focal, and focal on diffuse) and can mask lesions (32). Long-term fasting and low-carbohydrate diet consumption are used to reduce physiological FDG accumulation in the myocardium (33).

FDG-PET/MRI

PET/MRI scanners are a newly developed type of clinical imaging system (34). They benefit from the advantages of both PET, which exhibits superior performance during metabolic imaging, and MRI, which demonstrates superior performance during morphological and tissue characterization (17, 34). Regarding the differences between PET/CT and PET/MRI, PET/MRI reduces the patient’s radiation exposure, but takes longer to perform, as MRI are obtained with various MRI sequences instead of CT images. PET data can be subjected to attenuation correction via segmented attenuation mapping, in which the target tissue is classified into four types (background, lung tissue, fat, and soft tissue) using the Dixon MRI sequence (35). In addition, gadolinium-enhanced studies are useful for evaluating tumor vascularity, and ECG-gated sequences, breath-holding sequences, and late gadolinium enhancement (LGE) are also appropriate in certain cases (36). Nensa reported the FDG-PET/MRI findings of 20 patients with cardiac tumors (36). To reduce physiological FDG uptake in the myocardium, the patients were told to consume a high-fat, low carbohydrate diet and were injected with heparin before the scan. SUV were calculated with MRI-based attenuation correction (35). An SUVmax cut-off value of \(\geq 5.2 \) was found to exhibit 100% sensitivity and 92% specificity for differentiating malignant cardiac lesions from benign ones (36). During the MRI scans, tumor size; the presence/absence of pericardial effusion; cine morphology; and hyperintensity were evaluated on T1WI, T2WI, and contrast-enhanced scans. The examination of such MRI features resulted in 100% sensitivity and 92% specificity for differentiating malignant cardiac lesions from benign ones.

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Summary of the SUVmax of cardiac tumors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Malignant</td>
</tr>
<tr>
<td></td>
<td>Range</td>
</tr>
<tr>
<td>Shao (16), n; 23</td>
<td>n; 13</td>
</tr>
<tr>
<td>Rahbar (30) n; 24</td>
<td>n; 17</td>
</tr>
<tr>
<td>Nensa (36) n; 20</td>
<td>n; 7</td>
</tr>
<tr>
<td>Kikuchi (31) n; 17</td>
<td>n; 14</td>
</tr>
</tbody>
</table>

Malignant tumors exhibit greater SUVmax than benign tumors. n: number of cases.

SUVmax in Ref.36 was calculated with MR-based attenuation correction.
Benign tumors

Myxoma

Myxoma accounts for 25-50% of primary cardiac tumors and is the most common primary cardiac tumor affecting adults. It predominantly arises in females in their 30s to 40s. Myxomas occur in the left and right atria in 60-75% and approximately 20% of cases, respectively (18, 37). Most myxomas adhere to the atrial septum, and their mobility can be assessed using echocardiography or cine-MRI. Myxomas can be spherical or ovoid shaped; have smooth margins; consist of various components, such as myxoid and fibrous tissue and calcifications; and can exhibit hemorrhaging. Myxomas display low to iso-density on non-contrast-enhanced CT (14, 18). Calcification is more common in right atrial masses and is clearly shown on CT. On MRI, myxomas typically display low intensity on T1WI and high intensity on T2WI; however, they sometimes exhibit heterogeneous signal intensity due to mucoid degeneration or hemorrhaging (21). Faint contrast enhancement is seen in the arterial phase, and mild contrast enhancement is observed in the delayed phase (Fig. 1a-c). On FDG-PET/CT, myxomas display faint to mild FDG uptake. It is important to differentiate myxomas from intracardiac thrombi. Thrombi exhibit high intensity on MRI T1WI, but do not display contrast enhancement on CT or MRI or FDG avidity on FDG-PET/CT (13) (Fig. 1e, f).

Lipoma

Lipoma is the second most common primary benign cardiac tumor, accounting for 8-12% of such lesions (20). Lipomas can occur at any time of life and predominantly arise in the atrial septum, right atrium, and left ventricle. About 50% of lipomas arise from the mid-myocardial layer to epicardium, and the other half arise from the subendocardium (18). Lipomas are composed of mature adipose tissue and do not display calcification, hemorrhaging, or solid components. Both CT and MRI are useful for detecting the characteristic features of lipoma. On CT, lipomas exhibit homogeneous low density (fat density, CT value: less than -50 Hounsfield units). On MRI, lipomas demonstrate the same signal intensity as fat on both T1WI and T2WI, and their signal intensity decreases on fat-suppression sequences. In cases in which the tumor exhibits a solid component or contrast enhancement, liposarcomas and teratomas should be included in the differential diagnoses.

Fibroma

Fibromas, which consist of fibroblasts, commonly arise as primary cardiac tumors in children. Cardiac fibroma can cause arrhythmia or sudden cardiac death. The macroscopic features of cardiac fibroma include a well-defined mass that is mainly located in the interventricular septum, and central calcification is also often seen. Central calcification in a solitary mass can be used to differentiate cardiac fibromas from rhabdomyomas. CT is superior to MRI for detecting calcification (18). Cardiac tumours account for 1-2% of all primary lung tumors and are more common in women (18). Most cardiac tumors are non-neoplastic and are usually benign, such as myxoma, lipoma, and fibroma.
fibromas exhibit iso- or low intensity on T1WI and low intensity on T2WI, reflecting the fibrous tissue they contain. The contrast enhancement patterns of cardiac fibromas vary. LGE is seen in the delayed phase due to the presence of fibroblasts interspersed among a large amount of collagen, and this has been suggested to be another characteristic finding of cardiac fibromas (38). Masuda et al. reported that the abovementioned signal intensity pattern and the presence of LGE on MRI are very useful for differentiating an intensely FDG-avid cardiac fibroma from other malignant tumors (39).

Malignant tumors

Malignant lymphoma

About 16-28% of malignant lymphoma patients exhibit cardiac involvement (40), but primary cardiac lymphomas are rare, accounting for 0.5% of all lymphomas and about 1.3-2% of all cardiac tumors. More than 80% of primary cardiac lymphomas are DLBCL. Such tumors often develop in immunocompromised patients (41). As for their radiological features, primary cardiac lymphomas occur on the right side of the heart more frequently than other cardiac tumors. In cases of primary cardiac lymphoma, the coronary artery usually remains patent, and coronary blood flow passes through the mass in an unimpaired manner. Cardiac lymphomas are usually solid homogeneous masses, and a large amount of pericardial effusion is seen in some cases (31). Chemotherapy is effective against cardiac lymphoma, and pre-treatment clinical imaging plays a very important role in avoiding unnecessary invasive procedures. On MRI, such tumors display isointensity on T1WI and iso- to low intensity and heterogeneous contrast enhancement on T2WI. Malignant lymphoma is a systemic disease, and FDG-PET/CT is very useful for tumor staging, prognostic prediction, evaluating the early response to chemotherapy, and detecting relapses (42). Lymphomas commonly demonstrate strong FDG uptake. In the present study, the mean SUVmax of DLBCL was 25.9, which was significantly higher than those of other cardiac tumors (the mean SUVmax of malignant cardiac tumors was 10.5, and that of benign cardiac tumors was 3.4) (Fig.2) (31).

Metastatic cardiac tumors

Metastatic cardiac tumors occur significantly more frequently than primary ones. Such tumors are found in 10-12% in autopsy studies of patients with malignant neoplasms (43, 44). Cardiac metastases are most commonly derived from primary malignant tumors of the lungs (35-40%), followed by primary malignant tumors of the breast (7.3-12%) and hematological malignancies (10-21%) (18, 43). Such metastases most frequently arise in the pericardium (64-69%) and myocardium (29-32%). Endocardial or intracavitary metastatic tumors are rare (3-5%) (43). In the case of pericardial metastases, irregular thickening of the pericardium and pericardial effusion are often seen. After myocardial invasion, nodular masses develop in the myocardium. On MRI, such masses typically exhibit low intensity on T1WI and high intensity on T2WI. However, these findings are non-specific and are not useful for distinguishing metastatic cardiac tumors from other cardiac tumors. As mentioned previously, strong FDG uptake on PET/CT might be useful for diagnosing metastatic cardiac tumors, and PET/CT can also be employed for whole-body scans aimed at detecting residual lesions.

Conclusions

The use of an appropriate combination of cardiovascular imaging techniques is important for the differential diagnosis of cardiac tumors and for preoperative evaluations aimed at clarifying the mobility of cardiac tumors and the positional relationship between such tumors and the surrounding normal structures, such as cardiac valves and papillary muscle.

Acknowledgments

The authors acknowledge Mr. Yamato Kunikane RT and all of the nuclear medicine staff for their assistance in the preparation of the manuscript

Sources of funding

None

Conflicts of interest

None of the authors has any conflicts of interest to declare.
Reprint requests and correspondence:
Hideki Otsuka, MD, PhD
Department of Medical Imaging / Nuclear Medicine,
Tokushima University Graduate School, Kuramoto-cho 3-18-15, Tokushima city, Tokushima, Japan 770-8503
E-mail: hideki.otsuka@tokushima-u.ac.jp

References

