EDUCATIONAL TRACK FOR RESIDENTS—REVIEW ARTICLE

Statistics in Nuclear Cardiology: Evaluating Diagnostic Accuracy

Kathryn A. Williams, MS1, David Harrild, MD, PhD2 and David N. Williams, PhD3

Received: July 16, 2016/Revised manuscript received: July 22, 2016/Accepted: July 25, 2016 © The Japanese Society of Nuclear Cardiology 2016

Abstract

Developing novel nuclear cardiology approaches requires evaluating their diagnostic ability. Statistical measures such as sensitivity, specificity, receiver operating characteristic (ROC) curve, and area under the curve (AUC) are useful to evaluate the diagnostic value of novel imaging parameters. This paper reviews key statistical methods used in the evaluation of diagnostic tests and highlights their use in clinical research settings.

Keywords: Diagnostic testing, Nuclear cardiology, ROC, Statistics

Ann Nucl Cardiol 2016; 2 (1): 174

New imaging parameters are required to evaluate diagnostic outcomes. In nuclear cardiology imaging, sensitivity (Se), specificity (Sp) and accuracy are frequently used to evaluate the diagnostic capability of these new parameters. Receiver operating characteristic (ROC) curves play an important role in demonstrating the advantage of new imaging parameters compared to conventional approaches. In the first issue of Annals of Nuclear Cardiology, Tanaka et al. present a good example of the use of these statistical techniques in their article on the diagnostic value of left ventricular dyssynchrony parameters to detect multivessel coronary artery disease (CAD)(1). This paper reviews these key statistical approaches and highlights their use in the article by Tanaka et al.

Diagnostic testing with binary imaging parameters

A variety of cardiac imaging techniques may be used to aid in the diagnosis of suspected cardiac disease in high-risk patients. To be effective, parameters derived from imaging techniques must be able to distinguish between patients with cardiac disease or conditions and those without. For example, to use left ventricular (LV) mechanical dyssynchrony to identify the presence of multivessel CAD, Tanaka et al. used phase analysis with gated stress single-photon emission computed tomography (SPECT).

For all diagnostic tests within a symptomatic population, the goal is to provide an accurate diagnosis (without false diagnoses) at a justifiable cost. To assess the performance of a test, it is usually compared to a "gold" standard (e.g. histology, blood test, better imaging modality). The gold standard (GS) is not always perfect, but must be accepted as the best available measure based on standards and validation of the test (i.e. the best results in many studies). The GS itself may not be used routinely for a variety of reasons, such as cost, time constraints, invasiveness, or expertise required. The GS is a best available surrogate for the true presence or absence of disease. The presence or absence of disease or condition references throughout this article relate to whether the GS showed presence or absence of disease or condition.

In order to assess the ability of an imaging test, key results need to be considered. These results are best displayed in the following Table 1 where the test results (positive or negative) are contrasted against the GS results by classifying each of n patients into one of four categories:

- True Positive (TP)=both test and GS positive
- False Positive (FP)=test positive but GS negative
- False Negative (FN)=test negative but GS positive
- True Negative (TN)=both test and GS negative

Diagnostic test development provides the metrics for the

1) Kathryn A. Williams
Senior Biostatistician, Design & Analysis Core, Clinical Research Center, Boston Children’s Hospital, Harvard Medical School Teaching Hospital, 21 Autumn Street, Boston, MA 02115, USA
E-mail: Kathryn.Williams@childrens.harvard.edu
2) David Harrild
Department of Cardiology, Boston Children’s Hospital, and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
3) David N. Williams
Clinical Research Center, Boston Children’s Hospital, and Harvard Medical School, Boston, MA, USA
measures the true presence or absence of disease: There are 7 key measures for evaluating how well the test equally important to have an indication of how correct the test whether a patient has a positive imaging test diagnosis, it is this imaging test at diagnosing the cardiac disease or clinical use of the test. It gives information about “How good is this imaging test at diagnosing the cardiac disease or condition?” While the primary medical goal is to know whether a patient has a positive imaging test diagnosis, it is equally important to have an indication of how correct the test is. There are 7 key measures for evaluating how well the test measures the true presence or absence of disease:

- Sensitivity (Se): the proportion (or percent) of individuals with the disease or condition who are correctly classified. This true positive rate reflects the probability of a positive test if you have the disease. It suggests how good the test is when you have the disease or condition (Table 1).

- Specificity (Sp): the proportion of individuals without the disease or condition who are correctly classified. This true negative rate reflects the probability of a negative test if you do not have the disease. It suggests how good the test is when you do not have the disease or condition (Table 1). The measure “1-Specificity” gives the false positive rate and it is also a key measure.

- Positive Predictive Value (PPV): the proportion of individuals with a positive test who actually have the disease or condition. It is the probability of disease if you have a positive test. It suggests how good a positive test is at correctly identifying whether you do have the disease or condition (Table 1).

- Negative Predictive Value (NPV): the proportion of individuals with a negative test who lack the disease or condition. It is probability of NO disease if you have a negative test. It suggests how good a negative test is at correctly identifying whether you do NOT have the disease or condition (Table 1).

- Accuracy (ACC): the proportion of individuals with the disease or condition that test positive and individuals without the disease or condition that test negative. Calculated as the true positive plus true negative rate, this measure reflects the proportion of tests with the correct results; (a+d)/n (Table 1).

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Assessing a Test against a Gold Standard with n patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gold Standard (GS)</td>
<td></td>
</tr>
<tr>
<td>GS Positive</td>
<td>GS Negative</td>
</tr>
<tr>
<td>Test</td>
<td>TP a</td>
</tr>
<tr>
<td>Test Positive</td>
<td>TP a</td>
</tr>
<tr>
<td>Test Negative</td>
<td>FN c</td>
</tr>
<tr>
<td>Se=a/(a+c)</td>
<td>Sp=d/(b+d)</td>
</tr>
</tbody>
</table>

With n patients being tested, the counts for each combination of positive and negative between the Test and the GS are the cells of the table labeled a, b, c, d.

TP: true positive, FP: false positive, FN: false negative, TN: true negative, PPV: positive predictive value, NPV: negative predictive value, Se: sensitivity, Sp: Specificity

clarity may have higher costs, either financial or ethical, than the other. In situations where initial tests are used to identify patients that need additional more invasive tests, more false positives may be acceptable in the first round of testing.
because these false positives are expected to be caught in the next round(s). Finally, the last two of the 7 measures, LR + and LR-, can vary between zero and infinity. For LR + higher values are better, while for LR-, the opposite is true.

Diagnostic testing of continuous imaging parameters

With nuclear cardiology imaging, typical diagnostic measures do not provide clear binary responses (Yes or No) to diseases or conditions but may instead offer one of a range of values. Sensitivity and specificity measures can be calculated across the range of values. This is accomplished for each possible value (cutpoint) by dichotomizing the data at that cutpoint and then calculating the Se and (1-Sp) for each cutpoint. A receiver operating characteristic (ROC) curve plots the sensitivity measures against the false positive rate (1-specificity) for the range of cutpoints to help visualize performance of the test (Fig. 1). The area under the ROC curve (AUC -- also known as the c statistic) provides a measure of the overall discrimination ability of the test, e.g. how well the test distinguishes between those who have the disease versus those who do not. The AUC ranges between 0 and 1.0 (or 0 and 100%) and can be assessed as follows:

- $c=0.5$ suggests no discrimination (i.e. we might as well flip a coin)
- $0.7 \leq c < 0.8$ acceptable discrimination
- $0.8 \leq c < 0.9$ excellent discrimination

The ROC curve and its 95% confidence intervals and the AUC at 0.5 are represented on the figure. The cutpoint for multivessel CAD was defined as a summed difference score of > 5. With this dichotomizing of SDS the sensitivity is 74% and specificity is 78% (the black dot on the ROC curve maximizes the sum of the sensitivity and specificity).

In addition, a measurement value that maximizes sensitivity and specificity can be derived from the curve. It is impossible to maximize both sensitivity and specificity simultaneously. One has to be traded for the other. Therefore the most common method is to choose the cutpoint that maximizes the sum of Se and Sp. This provides a cutpoint to convert the continuous imaging parameters into a binary measure that can be used in the diagnostic statistics calculations.

ROC curves can be used to compare two or more imaging measures designed to diagnose the same cardiac disease or condition. The ROC curve that has the larger area below it (larger AUC) will provide more discrimination, but if the curves cross, the curve with a smaller area might provide more discrimination in an important range of the measure. This range should be considered. Delong et al. developed a statistical method for comparing the areas under two or more correlated ROC curves (3).

Additional considerations

Several excellent articles have been published on the challenges of diagnostic testing and the benefits of using the measures summarized in this article (4-9). There is more to the evaluation of diagnostic tests than could reasonably be included in this article. The Net Reclassification Index (NRI), Integrated Discrimination Improvement (IDI), validating results in independent data sets, combining tests into a single diagnostic measure, calculating PPV and NPV for different prevalences and comparing correlated ROC curves are all examples of additional topics in the wonderful world of statistics for diagnostic tests.

A clinical research application

The study by Tanaka et al. considered three accepted imaging measures for detecting multivessel CAD: summed stress score (SSS), summed rest score (SRS) and summed difference score (SDS). In addition, they analyzed two novel measures: LV dyssynchrony applying phase analysis to measure phase standard deviation (Phase SD) and histogram bandwidth (HB). Since all are continuous measures, ROC analysis showed that SDS had the highest AUC (0.81) (Fig.1).

The optimal cutpoints were determined using the ROC curves. These cutpoints maximize the sum of sensitivity plus...

Fig. 1 Receiver Operating Characteristic (ROC) curve illustration from Tanaka et al.

The ROC curve and its 95% confidence intervals and the AUC at 0.5 are represented on the figure. The cutpoint for multivessel CAD was defined as a summed difference score of > 5. With this dichotomizing of SDS the sensitivity is 74% and specificity is 78% (the black dot on the ROC curve maximizes the sum of the sensitivity and specificity).
specificity. Tanaka et al. concluded that SDS alone provided the highest accuracy of 76%, with sensitivity of 74% and specificity of 78%. By adding the consideration of Phase SD and HB with SDS to detect multivessel CAD, the sensitivity increased to 82% while specificity was 76%. In multivariate analysis, these three imaging parameters were significantly associated with multivessel CAD (p<0.05).

Tanaka et al. effectively used ROC curve analysis to identify which imaging parameters had the best test performance and determine that the addition of two new metrics (phase SD and HB, after stress) enabled superior identification of patients with multivessel CAD. Other articles such as the position paper on the use of noninvasive cardiac imaging in the diagnosis and evaluation of ischemic heart disease by Beanlands et al. (10) make effective use of diagnostic testing statistics to present their case.

Conclusion

It is essential that practitioners within the field of nuclear cardiology continue to advance diagnostic imaging tests and make full use of statistical tests such as those reviewed in this article. The 7 key statistics described should be calculated in order to understand the potential utility of new diagnostic tests. LR+ and LR- are important statistical measures that should be more frequently used than they are at present. Increasing incorporation of these statistical techniques into the field of nuclear cardiology will allow for continued improvement in the accuracy and utility of its diagnostic testing.

Acknowledgments

We are indebted to Dr. Henry A. Feldman and Dr. Leslie A. Kalish of the Clinical Research Center at Boston Children’s Hospital for their insightful review of the manuscript.

Sources of funding

None

Conflicts of interest

The authors have nothing to disclose.

References

Reprint requests and correspondence:
Kathryn A. Williams, MS
Senior Biostatistician, Design & Analysis Core, Clinical Research Center, Boston Children’s Hospital, Harvard Medical School Teaching Hospital, 21 Autumn Street, Boston, MA 02115, USA
E-mail: Kathryn.Williams@childrens.harvard.edu